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Development of a fully coupled control-volume �nite element
method for the incompressible Navier–Stokes equations
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SUMMARY

This paper proposes and investigates fully coupled control-volume �nite element method (CVFEM)
for solving the two-dimensional incompressible Navier–Stokes equations. The proposed method bor-
rows many of its features from the segregated CVFEM described by Baliga et al. Thus �nite-volume
discretization is employed on a colocated grid using either the MAW or the FLO schemes and an
element-by-element assembling procedure is applied for the construction of the discretizations equations.
In this paper, and unlike the case for most fully coupled formulations available in the literature, the
Poisson pressure equation has been retained from the segregated approach. The use of a pressure equa-
tion leads to an unfavourable size increase of the fully coupled linear system, but signi�cantly improves
the system’s conditioning. The fully coupled system obtained is solved using an ILUT preconditioned
GMRES algorithm. The other important element in this paper is the proposal of a Newton linearization
of the convection terms in lieu of the common Picard iteration procedure. A systematic comparison
between two segregated and four fully coupled fomulations has been presented which has allowed for
an evaluation of the individual bene�ts and strengths of the coupling and linearization procedure by
studying lid-driven cavity problems and �ows past a circular cylinder. All coupled formulations have
proven to be signi�cantly superior both in robustness and e�ciency, as compared with the segregated
formulation. In some circumstances, the coupled methods yield a converged solution of the system of
discretized equations constructed using the FLO scheme, while the segregated formulations diverge.
Compared to Picard’s linearization, Newton’s linearization is more e�cient at reducing the number
of iterations needed to converge, but requires more computational e�ort per iteration from the linear
equation solver. Furthermore, the Jacobian matrix should include contributions from the nonlinearity
appearing at both the governing-equation level and the interpolation-scheme level to ensure Newton’s
method convergence. The key element in guaranteeing successful, fully coupled solutions lies in the use
of an e�cient linear equation solver and preconditioner. Copyright ? 2004 John Wiley & Sons, Ltd.
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622 I. AMMARA AND C. MASSON

1. INTRODUCTION

In the incompressible Navier–Stokes equations, pressure appears only through its gradient in
the momentum equations and is only indirectly speci�ed via the continuity equation. This
implies that there is no transport equation describing the evolution of the pressure �eld and
that only its relative value is relevant. The lack of a dedicated pressure equation is respon-
sible for the di�culties encountered in solving the incompressible Navier–Stokes equations.
Numerous approaches have been suggested to overcome this problem. Apart from the vorticity-
based and pseudocompressibility methods, the most commonly used methods use the so-called
Poisson pressure equation approach. In this approach, the incompressibility constraint is satis-
�ed through a pressure equation derived from the continuity equation by expressing velocity
derivatives as a function of the pressure gradient using the momentum equations. The most
common approach for solving this system of equations, known as the segregated solution pro-
cedure, consists in solving these equations independently, in sequence. The pressure–velocity
coupling is solved iteratively, successively updating the velocity variables in the momen-
tum equations and the pressure in the Poisson pressure equation. SIMPLE (semi-implicit
method for pressure-linked equations) [1] and other derived methods such as SIMPLER [1]
and PISO [2], using an iterative treatment of the pressure–velocity coupling, have demon-
strated their ability to solve complex problems. However, not only do these methods require
some form of underrelaxation and solver tuning to ensure convergence, they may also fail
to reach a solution for some problems. Weak pressure–velocity coupling is one of the key
components of these methods, in that it partly controls the convergence rate of the overall
solution procedure. This aspect becomes dominant as the number of grid points increases.
Rapid advances in computer speed and available memory combined with recent developments
in non-stationary iterative solvers and preconditioners [3–5] for non-symmetric matrices have
enabled the development of fully coupled algorithms for the solution of the Navier–Stokes
equations. Although research in the �nite volume community has been ambivalent on the e�-
ciency of fully coupled methods compared to the more common segregated solution procedures
[6, 7], there is common agreement on the added robustness of fully coupled methods. This
improved robustness is attributed to the implicit treatment of the pressure–velocity coupling
[6, 8].
In this paper, the development of a fully coupled method for solving the two-dimensional

incompressible Navier–Stokes equations is presented. The proposed method borrows many of
its features from the segregated control volume �nite element method (CVFEM) described
by Baliga et al. [9]. Thus, �nite volume discretization is employed on a colocated grid using
either the MAW or the FLO scheme described by Masson et al. [10], and using an element-
by-element assembling procedure. Unlike the case for most fully coupled formulations, in this
paper, the Poisson pressure equation of the segregated approach has been retained. Although
the use of a Poisson pressure equation is not essential in fully coupled solution contexts
and leads to the unfavourable increase in size of the fully coupled linear system, it does
signi�cantly improve matrix system conditioning. Straightforward discretization of the Navier–
Stokes equations (i.e. when no pressure equation is introduced through a treatment of the
continuity equation) leads to very ill-conditioned systems resulting from the presence of zeros
in the main diagonal for the continuity equation since pressure is not appearing explicitly.
These zeros in the main diagonal can be eliminated by reordering the variables or by using a
penalty formulation [6, 11]. In either case, these treatments are palliative, whereas the use of
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DEVELOPMENT OF A FULLY COUPLED CVFEM 623

a poisson pressure equation eliminates the source of the problem. Thus, e�ciency problems
associated with di�culties in solving the ill-conditioned linear systems encountered in previous
fully coupled e�orts [6, 11] can be alleviated by using a Poisson pressure equation formulation.
This approach allows full bene�ts to be obtained from the implicit pressure–velocity coupling
and this is what motivates its use in this paper. The resulting fully coupled system can be
solved by two di�erent methods. The most common is to use a direct solver such as a
Gaussian elimination method. However, the use of direct methods is limited by both storage
requirements and computing time, which prevent their use in large problems. This drawback
has been countered by recent developments in non-stationary iterative solution algorithms
[5, 4] such as Krylov subspace methods. Besides requiring fewer computer resources, using
an iterative solver provides �exibility in controlling the extent to which the linear system is
solved, contrary to direct methods, which yield the exact solutions. Hence, the tolerance of
the iterative linear equation solver can be relaxed when far from the converged solution and
tightened as convergence approaches, leading to a more e�cient algorithm. In this paper, a
restarted version of Saad’s GMRES [12] is employed using an incomplete LUT decomposition
as a preconditioner. Although this algorithm may not be the fastest among all of the iterative
solvers, this preconditioned Krylov subspace method constitutes a robust and e�cient solver
guaranteeing monotonic convergence.
Apart from the implicit treatment of the pressure velocity coupling, the use of a fully cou-

pled formulation has additional bene�ts for the algorithm, because it is capable of implicitly
treating the nonlinearity of the momentum equations’ convection terms. Thus, the more ef-
�cient Newton linearization can be applied in place of the commonly used Picard iteration
procedure, leading to a faster solution algorithm.
The paper is arranged as follows: The governing equations are �rst presented in

Section 2. The ingredients for the numerical discretization of these equations are then de-
tailed in Section 3. Starting from the SIMPLER segregated algorithm, the proposed fully
coupled formulation is presented. Particular emphasis is placed on the description of the lin-
earization of the convective terms, presenting both Picard’s and Newton’s linearizations. Other
signi�cant aspects include the derivation of a pressure equation allowing the formulation of a
co-located equal order CVFEM that does not su�er from checkerboard pressure �elds in the
simulation of incompressible �uid �ows. In the �nal section, the performance of the proposed
fully coupled CVFEM methods are compared to that of their segregated counterparts through
lid-driven cavity problems and �ows past circular cylinders.

2. GOVERNING EQUATIONS

Within the �nite volume framework, the most appropriate basis for the discretization process
is the integral form of the conservation laws. In conservative integral form, the incompressible
laminar, steady-state Navier–Stokes equations over a control volume V enclosed by the surface
A read as follows:
Continuity equation

∫
A
�ujnj dA=0 (1)
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624 I. AMMARA AND C. MASSON

Table I. Speci�c forms of the general transport equation.

�� � S�

x-Momentum � u −(@p=@x)
y-Momentum � v −(@p=@y)
Continuity 0 1 0

Momentum equations∫
A

(�ujnj)ui dA=−
∫
V

@p
@xi

dV+
∫
A
�
@ui
@xj

nj dA (2)

where ui is a Cartesian component of the velocity vector V, � and � represent the �uid
density and viscosity, respectively, and p is the pressure. nj is a component of the outward unit
vector normal to the elementary surface dA. A general description of a transport phenomenon
involving the scalar dependent variable � is given by∫

A

(�ujnj)� dA=
∫
A
��
@�
@xj

nj dA+
∫
V

S� dV (3)

The momentum and the continuity equations, Equations (1) and (2), can be obtained from
Equation (3) by de�ning the independent variable, �, the di�usion coe�cient, ��, and source
term, S�, according to Table I.

3. NUMERICAL APPROACH

The proposed numerical method is a two-dimensional CVFEM based on a primitive-variable,
co-located, equal-order formulation that shares some similarities with the work of Baliga,
Saabas and Masson [9, 10], Prakash and Patankar [13] and Schneider and Raw [14]. The two
main aspects that dissociate this method from prior formulations are the implicit treatment of
the pressure–velocity coupling and the proposal of a Newton linearization of the convection
terms. Therefore, for the sake of clarity, a concise description of the various common building
blocks involved in the formulation of a CVFEM are �rst presented in this section. Then,
building upon this framework, a SIMPLER-based CVFEM and the proposed fully coupled
method are successively constructed, placing some emphasis on the aspects distinguishing
the two approaches. This section ends by extending the ideas proposed in the fully coupled
method by implementing a Newton linearization of the convection terms.

3.1. Building blocks

3.1.1. Domain discretization. The spatial discretization procedure begins by dividing the two-
dimensional computational domain into triangular elements upon the vertices at which �ow
variables are stored. Polygonal control volumes are then formed by joining the midpoints of
the sides of each element to the centroid as shown in Figure 1; the solid lines denote domain
and element boundaries; the dashed lines represent control-volume faces and the shaded areas
show the control volumes associated with one internal node and one boundary node.
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DEVELOPMENT OF A FULLY COUPLED CVFEM 625

Figure 1. Example of a calculation domain and its discretization into
triangular elements and polygonal control volumes.

Figure 2. Typical control volumes associated with (a) an internal node, (b) a boundary node.

3.1.2. Integral conservation equation. Consider a typical node c in the calculation domain: it
could be an internal node, such as the one shown in Figure 2(a) or a boundary node, similar
to the one shown in Figure 2(b). The general integral conservation equation (Equation (3)),
when applied to the control volume surrounding node c in Figure 2, can be written as follows:

M∑
k=1

[∫ o

a
Jjnj ds+

∫ d

o
Jjnj ds−

∫
caod

S� dV

]
+ [boundary contribution if applicable]=0 (4)

where M is the number of triangular elements having node c as a vertex, nj is a unit outward
vector normal to the di�erential length element ds, and Jj is the combined convection–
di�usion �ux of �:

Jj =JDj +JCj (5)
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626 I. AMMARA AND C. MASSON

JDj =−�� @�@xj (6)

JCj = �umj � (7)

With reference to Equation (7), the superscript is attached to the velocity vector in order to
emphasize its connection to the mass �ux: this velocity is interpolated in a special way, as
discussed in the next section. The form of Equation (4) emphasizes its ability to be assembled
using an element-by-element procedure.

3.1.3. Interpolation functions. The derivation of algebraic approximations to the integral con-
servation equations, Equation (3), requires the speci�cation of element-based interpolation
functions for dependent variables and thermophysical properties.
In each element, all thermophysical properties, such as density, � and viscosity, �, are

evaluated at the triangular element’s centroid o and assumed to prevail over the element.
To obtain an algebraic approximation of the di�usive �uxes, Equation (6), the transported

scalar � is interpolated linearly within each element.
In the derivation of algebraic approximations of the convective �uxes, Equation (7), two

di�erent interpolation schemes for � have been investigated: a �ow oriented upwind scheme
(FLO) and a mass weighted upwind scheme (MAW). The FLO scheme is based on the
earlier work of Baliga and Patankar [15, 16]. The interpolation function used in this scheme
responds appropriately to an element-based Peclet number and to the direction of the element-
average velocity vector. In planar two-dimensional problems involving acute-angled triangular
elements and relatively low-element Peclet numbers, the FLO scheme has proved quite suc-
cessful [16, 17]. The MAW scheme [10] ensures, at the element level, that the extent to which
the dependent variable at a node exterior to a control volume contributes to the convective
out�ow is less than or equal to its contribution to the in�ow by convection. Thus it is a
su�cient condition for ensuring that the algebraic approximations to the convective terms in
Equation (4) add positively to the discretized equation. Furthermore, the MAW scheme takes
better account of the in�uence of the direction of �ow than Prakash’s donor–cell scheme [18].
Thus the MAW scheme produces less false di�usion than the donor-cell scheme. In problems
with acute-angled triangular elements and relatively low-element Peclet numbers, the FLO
scheme is more accurate than the MAW scheme. However, when high-element Peclet num-
bers are involved, especially in conjunction with obtuse-angled elements, the FLO scheme
produces negative coe�cients in the discretized equations which can lead to numerical dif-
�culties and physically meaningless solutions [10]. When such di�culties are encountered,
the MAW scheme is recommended. As demonstrated and discussed in the Results section,
the convergence di�culties of the FLO scheme seem to be less severe when a fully coupled
formulation is used.
Pressure is interpolated linearly within each element.
The proposed formulation uses co-located grids; hence, to avoid spurious pressure modes,

Prakash and Patankar’s approach [13] has been adopted. A distinction is made between mass
velocities, denoted um in Equation (7) and corresponding to uj in Equations (1)–(3) and
convected velocities corresponding to ui in Equations (2) and (3). Mass �uxes, (�uj), in
the momentum and continuity equations, Equations (1)–(2), are interpolated using a par-
ticular form of the discretized momentum equations according to the approach of Saabas
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and Baliga [17]. The mass velocities’ (umi )c de�nitions are very similar to the expressions
of the convected velocities (ui)c obtained by rewriting the discretized momentum equations,
Equation (13), with the exception that the volume-averaged pressure gradient, @p=@xi, is now
evaluated for the element level instead of the control volume. Following Prakash and Patankar
[13], the mass velocities umi can be considered as the sum of a pseudo-velocity, (ûi)c, and a
pressure gradient term, −(dui)c(@p=@xi)ele:

(umi )c=(ûi)c − duic
(
@p
@xi

)
ele

(8)

where

(ûi)c =
∑

nb a
ui
nb(ui)nb + b

ui

auic
(9)

duic =
VCV
auic

(10)

The subscript nb refers to the nodes neighbouring to the grid point of interest c. Substituting
the pseudo-velocities and the pressure terms into the continuity equation leads to a Poisson
equation for the pressure. On each element, mass �uxes are interpolated by assuming linear
variation of the pseudo-velocities, (ûi)c and the pressure coe�cient, duic , in conjunction with
the local element pressure gradient.

3.2. Segregated formulation

Using the previously described interpolation functions, the Navier–Stokes equations, Equations
(1)–(2), can be discretized into the following sets of equations for any particular node of
interest c:
Continuity equation

apc pc=
∑
nb
apnbpnb + b

p (11)

where

bp=
M∑
k=1

[∫ o

a
�ûjnj ds+

∫ d

o
�ûjnj ds

]
(12)

Momentum equations

auic (ui)c=
∑
nb
auinb(ui)nb + b

ui +

(
@p
@xi

)
CV

VCV (13)

where (
@p
@xi

)
CV

VCV =
M∑
k=1

∫
caod

(
@p
@xi

)
k
dV (14)
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628 I. AMMARA AND C. MASSON

Written in this form, these coupled sets of non-linear discretized equations can be solved
in a segregated manner using an iterative sequential variable adjustment scheme [17] similar
to the well-known SIMPLER [1] algorithm without a pressure correction equation:

1. Start with a guessed velocity �eld.
2. Calculate the coe�cients in the momentum equations, Equation (13), without the con-
tributions of the pressure gradient terms.

3. Calculate ûi and dui .
4. Calculate the coe�cients of the pressure equations, Equation (11).
5. Solve the pressure equations.
6. Complete the momentum equations by adding the pressure gradient terms, under-relax
these equations, and solve.

7. Return to step 2 and repeat until convergence.

For this paper, steps 2–7 of this procedure were repeated until the non-dimensional sum
of the absolute values of the residues for each set of discretization equations was less
than 10−8.
This segregated algorithm is based on successive substitution, or Picard, linearization of

the convective transport terms. In each cycle of this algorithm, the linearized sets of dis-
cretized equations for p, u, v are solved sequentially. The discretized equations for u and v
are under-relaxed, using Patankar’s implicit under-relaxation procedure [1] just before they
are solved. For all computations, the values of the under-relaxation parameters has been
set to 0.5 for the momentum equations. The discretized equations for p are not under-
relaxed.
In order to facilitate the implementation and testing of the proposed CVFEM, structured

grids were used in this study: the nodes in the �nite element mesh lie along non-orthogonal
lines that allow (I; J ) indexing and each node has a maximum of eight neighbours. Thus,
in the structured-grid implementation used here, each of the discretized equations follows a
nine-diagonal matrix structure as presented in Figure 3. This system can be cast into three
tridiagonal matrix systems and solved independently in sequence for ui(u; v) and p, using
an iterative line-by-line Gauss–Seidel method based on the Thomas tridiagonal matrix al-
gorithm [1]. As subsequently detailed in Section 3.3, a similar block tridiagonal solution
procedure cannot be used for solving the matrix system corresponding to the proposed fully
coupled formulation. In this study, the coupled-equation system, which strictly requires the
simultaneous solution update of all independent variables over the whole computational do-
main, is solved using Saad’s GMRES(m) algorithm [12] preconditioned by an incomplete
LUT decomposition. Therefore, in order to properly evaluate the sole e�ect of the proposed
pressure–velocity coupling procedure of the fully coupled formulation on the e�ciency of the
overall algorithm, the same ILUT preconditioned GMRES(m) algorithm was also implemented
in the segregated formulation.

3.3. Fully coupled formulation

Although not explicitly expressed, the segregated discretized equations, Equations (11)–(13),
already contain the necessary elements for their coupled solution. In the momentum equations,
the volume-averaged pressure gradient over the control volume surrounding node c can be
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Figure 3. Matrix pattern for the segregated method.

expressed in terms of the pressure at its neighbouring grid points:(
@p
@xi

)
CV

VCV =
∑
nb
aui;pnb pnb (15)

Similarly, in the continuity equation, the term bp can be expressed explicitly in terms of the
pseudo-velocity components at the neighbouring grid points:

bp=−ap; ûc ûc +
∑
nb
ap; ûnb ûnb − ap; v̂c v̂c +

∑
nb
ap; v̂nb v̂nb (16)

Having recognized the implicit dependence of the discretized momentum and continuity equa-
tions in p, û and v̂, one can obtain the following set of equations:
Continuity equation:

apc pc + a
p; û
c ûc + ap; v̂c v̂c=

∑
nb
apnbpnb +

∑
nb
ap; ûnb ûnb +

∑
nb
ap; v̂nb v̂nb (17)

Momentum equations:

auic (ui)c + a
ui;p
c pc=

∑
nb
auinb(ui)nb +

∑
nb
aui;pnb pnb (18)

Finally, the expression of ûi closes the fully coupled system:

auic (ûi)c=
∑
nb
auinb(ui)nb (19)
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which can be written in matrix form

F(X )=AcXc +
∑
nb
AnbXnb − B=0 (20)

where Xc=[uc; vc; ûc; v̂c; pc]T and Xnb = [unb; vnb; ûnb, v̂nb; pnb]T. In 2D �ows, the structures of
the matrix Ac and Anb are given by

Ac =




auc 0 0 0 au;pc

0 avc 0 0 av;pc

0 0 auc 0 0

0 0 0 avc 0

0 0 ap; ûc ap; v̂c apc




(21)

Anb =




−aunb 0 0 0 −au;pnb
0 −avnb 0 0 −av;pnb

−aunb 0 0 0 0

0 −avnb 0 0 0

0 0 −ap; ûnb −ap; v̂nb −apnb




The vector B contains contributions related only to Dirichlet boundary conditions since all
other boundary condition contributions are treated implicitly. Thus, for two-dimensional struc-
tured grids, the linear system involves a 5× 5 block nine-diagonal matrix. In this formulation,
the pseudo-velocities are treated as primary unknowns, which ensures a nine diagonal matrix
structure. The pseudo-velocities could have been expressed directly in terms of velocities in
the discretized equations leading to a more compact 3× 3 block matrix structure [19]. How-
ever, with the mass �ux interpolation procedure adopted in this study, the continuity equations
would have involved 24 velocity neighbours of point c instead of eight in the present for-
mulation. This would have greatly increased the complexity of the assembling procedure and
the implementation of a Newton-type linearization without any signi�cant storage savings.
The following sequence of operations outlines the coupled solution procedure for the dis-

cretized Navier–Stokes equations:

1. Start with guessed velocity and pressure �elds.
2. Calculate the coe�cients in the momentum equations, Equation (18), and the pseudo-
velocity equations (Equation (19)).

3. Calculate dui .
4. Calculate the coe�cients of the pressure equation (Equation (17)).
5. Simultaneously solve the momentum, pressure and pseudo-velocity equations.
6. Return to step 2 and repeat until convergence.

In a procedure that is similar to the one used for the segregated algorithm, steps 2–6 of the
coupled solution procedure are repeated until the non-dimensional sum of the absolute values
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of the residues for the discretized continuity and momentum equations are less than 10−8. In
the fully coupled formulation, the discretized equations are solved simultaneously for velocity
components, ui, pseudo-velocity components, ûi, and pressure, p. No relaxation or special
treatment is required to ensure convergence, as equation coupling is done implicitly.
The 5× 5 block nine-diagonal structure of the fully coupled linear system is very simi-

lar to the one established using the segregated approach (see Figure 3), with a 5× 5 block
now replacing the single segregated equation coe�cient. Hence, it would be natural to cast
this system into a 5× 5 block tridiagonal system and solve it using line-by-line Gauss–Seidel
iterations. However, this approach systematically fails to converge regardless of the number
and order of the sweeps. When solving for pressure in the segregated procedure, the pseudo-
velocity �eld is kept constant within an overall iteration. This is not the case in the proposed
fully coupled formulation, where pseudo-velocities, ûi, are primary unknowns. Therefore, suc-
cessively solving and updating the pseudo-velocities using the line-by-line Gauss–Seidel algo-
rithm creates signi�cant local mass imbalances and leads to divergence. As a result, the linear
solver must simultaneously update all the unknowns over the whole computational domain.
The fully coupled system of discretized equations can be solved using direct methods. How-
ever, direct methods such as Gaussian elimination can be extremely costly in terms of both
CPU time and memory requirements owing to large matrix bandwidths, and therefore limit the
size and complexity of tractable problems. The future extension of this research to complex
problems involving two- and three-dimensional �ne grids motivates the use of preconditioned
sparse matrix iterative solution algorithms for solving the fully coupled system. These algo-
rithms are implemented to take advantage of sparse, banded matrix structures such as the
ones encountered in CFD problems. In this study, the restarted version of Saad’s GMRES
algorithm [12] is employed using an ILUT decomposition as a preconditioner. A well-known
limitation of GMRES is that the amount of computational work and storage required per it-
eration rises linearly with the iteration count. GMRES quickly becomes impractical for large
grids. GMRES(m) o�ers a remedy to this problem by restarting the algorithm after m iter-
ation. Accumulated data are cleared and intermediate results are used as the initial data for
the following m iterations. This procedure is repeated until convergence is achieved and leads
to a more e�cient solver. Although signi�cant CPU savings can be realized by �ne tuning
the solver’s parameters (such as the number of ILUT �ll in, the size of Krylov subspace
before restart and the tolerance stopping criteria), this issue has not been addressed in this
paper. For the calculations presented in Section 4, the control parameters were set to baseline
recommended values [12] and were modi�ed only when convergence di�culties occurred.
The only solver modi�cation implemented in this study to speed up the solution of the linear
system was the freezing of the preconditioner [20] for some iterations after an approximate,
but realistic, solution was obtained. This strategy proved to be both quite successful and easy
to implement.

3.4. Newton’s linearization

Apart from the implicit pressure–velocity coupling, the use of a fully coupled formulation
also allows for the implicit treatment of the convection terms’ non-linearities in the momen-
tum equations. Newton’s method is an e�cient technique for solving systems of non-linear
equations with this form

F(X )= [f1(X ); f2(X ); : : : ; fN (X )]T =0 (22)
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where X can be expressed as X =[x1; x2; : : : ; xN ]T. The application of Newton’s method re-
quires the solution of the linear system:

J n�X n=−F(X n) (23)

where the elements of the Jacobian matrix J are de�ned by jij= @fi=@xj and the new solution
approximation is obtained from

X n+1 =X n + d�X n (24)

The constant d(06d61) in the above equation is used to damp the Newton updates when
far from the converged solution. In this study however, no relaxation was necessary in order
to obtain the solutions presented in Section 4. Forming the Jacobian matrix J can be done
either by numerically evaluating the derivatives applying �nite di�erence approximations [7]
to Equation (20), or via direct algebraic di�erentiation. Although more tedious to implement,
algebraic di�erentiation eliminates the errors associated with �nite di�erencing at a fraction
of computing e�ort.
The non-linearities in the Navier–Stokes equations appear in the momentum equations only

through the convection terms from the product (umj )(ui). However, neglecting the dependence
of ui in um through the interpolation convection scheme leads to signi�cant errors in the
Jacobian matrix and lowers the e�ciency of the algorithm. Thus, the interpolated value of ui
must be di�erentiated with respect to the �ve primary unknowns in order for the algorithm
to bene�t from Newton’s linearization. In this study, the MAW and the FLO scheme where
both di�erentiated. Non-linearities related to the mass velocity de�nition (see Equation (19))
are present in the fully coupled system of equations (Equation (20)). Their contributions are
not included in the proposed Jacobian matrix. The Jacobian matrix structures remains a 5× 5
block nine-diagonal matrix taking the form

J n�X n=(Ac + Jc)�Xc + (Anb + Jnb)�Xnb (25)

with

Jc =




0 0 jûc jv̂c ju;pc

0 0 jûc jv̂c jv;pc

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




(26)

Jnb =




0 0 −jûnb −jûnb −ju;pnb
0 0 −jv̂nb −jv̂nb −jv;pnb
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




(27)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:621–644



DEVELOPMENT OF A FULLY COUPLED CVFEM 633

As the basic structure of the equation system Equation (23) associated with Newton’s lin-
earization is similar to that of system Equation (20) as related to Picard’s, the same coupled
solution procedure has been used for both linearization schemes. In Newton’s method, the
only special treatment needed is to set Jc and Jnb to zero for a few iterations to initiate the
algorithm, until an approximate but realistic solution is established.

4. RESULTS

In this section, six speci�c algorithms are compared systematically in terms of their computa-
tional e�ciency for an internal and external �ow problem. There are two segregated algorithms
which di�er only with respect to the chosen linear solver. The �rst one uses a line-by-line
Gauss–Seidel method based on a Thomas tridiagonal matrix solver, while the second formu-
lation uses Saad’s GMRES(m) solver. There are four fully coupled algorithms which all use
the GMRES(m) solver. Two of them use Picard’s linearization while the last two are based
on Newton’s linearization. For a given type of linearization (Picard’s or Newton’s), there is
one algorithm with and another algorithm without the freezing of the ILUT preconditioner.
For a given convection scheme (FLO or MAW), the six algorithms produce exactly the same
converged solution, since they solve the same set of discretized equations. The solution accu-
racy varies only in terms of the selected convection scheme (FLO or MAW). The proposed
fully coupled algorithm necessitate about 20 times the memory requirements of its segregated
counterpart making a possible extension to practical three-dimensionnal problems untractable
on a personal computer.

4.1. Lid-driven cavity �ow

The classical 2D square-driven cavity problem 06x6L, 06y6L with u(x; L)=Uwall is �rst
used to demonstrate the performance of the proposed fully coupled methods (see Figure 4). To
qualify the accuracy of the proposed formulation, calculations have been performed on four
di�erent uniform grids using both the MAW and the FLO schemes. Tables II and III compare
values of minimal and maximal centerline velocities at Re=400 and 1000, respectively. The
Reynolds number for this problem has been de�ned as Re=�UwallL=�. In Tables II and III, no
distinction is made among the calculation algorithms (segregated, fully coupled or Newton)
since they do not a�ect the values of the converged solutions.
Using the FLO scheme, the proposed CVFEM yields results that are in good agreement

with the benchmark calculations made by Ghia et al. [21]. However, the MAW scheme
computations systematically display lower accuracy, con�rming the observations of Saabas
et al. [9, 10]. The bene�ts of the fully coupled and the Newton formulations are quanti�able
in terms of added e�ciency and robustness. Inferences as to the robustness of the fully coupled
procedure can be drawn from the fact that no form of relaxation is needed to obtain the results
presented here, contrary to the segregated algorithm, where underrelaxation is necessary to
o�set the weak iterative pressure–velocity coupling. In Newton’s method, the only special
treatment needed is to hold back the introduction of the linearized convection terms of the
Jacobian matrix for a few iterations to initiate the algorithm, until an approximate but realistic
solution is established.
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Figure 4. De�nitions for lid-driven cavity �ows.

Table II. Maximum and minimum centrelinevelocities—Re=400.

Method Grid
Umin
Uwall

Vmin
Uwall

Vmax
Uwall

MAW 32× 32 −0:2290 −0:3610 0.2196
MAW 64× 64 −0:2608 −0:3902 0.2449
MAW 96× 96 −0:2780 −0:4079 0.2597
MAW 128× 128 −0:2884 −0:4180 0.2687

FLO 32× 32 −0:2796 −0:3994 0.2608
FLO 64× 64 −0:3097 −0:4336 0.2867
FLO 96× 96 −0:3191 −0:4436 0.2951
FLO 128× 128 −0:3231 −0:4477 0.2987

Ghia [21] 129× 129 −0:3273 −0:4499 0.3020

Table III. Maximum and minimum centreline velocities—Re=1000.

Method Grid
Umin
Uwall

Vmin
Uwall

Vmax
Uwall

MAW 32× 32 −0:2561 −0:4230 0.2362
MAW 64× 64 −0:2798 −0:4385 0.2664
MAW 96× 96 −0:3015 −0:4571 0.2885
MAW 128× 128 −0:3162 −0:4699 0.3036

FLO 32× 32 −0:3061 −0:4551 0.2898
FLO 64× 64 −0:3419 −0:4828 0.3271
FLO 96× 96 −0:3596 −0:4988 0.3458
FLO 128× 128 −0:3692 −0:5079 0.3562

Ghia [21] 129× 129 −0:3829 −0:5155 0.3709
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Figure 5. Evolution of normalized computational e�ort with number N of points,
lid-driven cavity �ow—Re=400, FLO scheme.

To assess the e�ciency of each of the proposed formulations, Figure 5 shows the evolution
of the normalized computational e�ort needed to reach a value of 10−8 for the non-dimensional
sum of the absolute values of the residues for each set of discretization equations. The residu-
als have been non-dimensionalized using reference length L and velocity Uwall. The normalized
computational e�ort refers to the CPU computational time of a process divided by the CPU
computational time required by the segregated formulation with the Gauss–Seidel solver when
solving the lid-driven cavity at Re=400 on a 128× 128 grid. This reference computational
time by which all computational e�orts are normalized has a numerical value of 5196 sec-
onds as obtained on an Intel Pentium IV 1:9 GHz running Linux Mandrake 8.1 and using
GNU fortran compiler(v0.5.24). Results were obtained using the FLO scheme for solving the
lid-driven cavity problem at Re=400. The two segregated solutions presented in Figure 5
di�er solely in the type of linear equation solver used. In a segregated-solution context with
structured grid, a line-by-line Gauss–Seidel solver clearly proves to be more e�cient than an
ILUT preconditioned GMRES(m) strategy. Moreover, the di�erence in e�ciency between the
two methods increases with the number of grid points. Although much simpler to implement,
line-by-line Gauss–Seidel takes better advantage of the multi-diagonal structure of the system
and is therefore more e�cient. In a structured-grid context, no e�ciency gain seems to be
drawn from the use of a non-stationary iterative solver such as GMRES(m). As previously
mentioned, for mass conservation reasons, coupled solutions require the simultaneous updating
of all �ow variables over the whole computational domain, making a non-stationary solver
mandatory. Hence, any improvement from the coupled method over the segregated method
should be attributed solely to the implicit coupling algorithm rather than the solver. Regardless
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Figure 6. Normalized computational e�ort for a 128× 128 grid, lid-driven cavity
�ow—Re=400, FLO scheme.

of the number of grid points, all the proposed fully coupled formulations are more e�cient
than the segregated approaches. The evolution of the latter’s normalized computational e�ort
seems to follow a quadratic (N 2) behaviour, while their fully coupled counterparts display
a linear form (N). The quadratic and linear regressions shown in Figure 5 have been �tted
to the results with a R2 value over 95%. Thus, in comparison with the segregated approach,
the relative e�ciency of the fully coupled methods increases with the number of grid points.
One can see in Figure 6 that for a 128× 128 grid, the segregated Gauss–Seidel method is
more than three times faster than its GMRES(m) counterpart. Figure 6 also shows that the
proposed fully coupled formulation using Newton’s linearization and preconditioner freezing
strategy is the more e�cient one and proves to be 34 times faster than the segregated ap-
proach using Gauss–Seidel. Since most practical CFD problems require more than 16 000
grid points, signi�cant computational e�ort savings can be made especially within the context
of an optimization procedure requiring numerous computations. The convergence acceleration
achieved through Newton’s linearization of the convection terms represents about 40–50% in
normalized computational e�ort savings over that using Picard’s linearization.
Some additional insights can be had from studying the convergence histories of the algo-

rithms presented in Figure 7 for the lid-driven cavity problem at Re=400 on a 128× 128 grid.
Contrary to the segregated solution, both coupled methods display monotonic convergence.
The most signi�cant di�erence lies in the rate of convergence per iteration; 14 300 iterations
are necessary in order to reach a residual under 10−8 for the segregated method, while only 27
and 13 iterations are required to achieve similar accuracy for the fully coupled methods using
Picard’s and Newton’s linearizations, respectively. This result highlights the highly iterative
nature of segregated algorithms where iterations are needed for both solving non-linearities

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:621–644



DEVELOPMENT OF A FULLY COUPLED CVFEM 637

25 50 75 100 125 150 175 200

Iterations

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
es

id
ua

l

Segregated (SIMPLER)
Fully coupled (Picard)
Fully coupled (Newton)

Figure 7. Convergence histories, lid-driven cavity �ow—Re=400, 128× 128 grid, FLO scheme.

in the PDEs and coupling these equations. In light of these results, it appears that for segre-
gated solutions, most of the iterating work is done for coupling the equations, while in fully
coupled algorithms, the sole purpose for iterating is to solve non-linearities. However, these
reductions in the number of iterations do not translate into proportional computational time
savings. This result arises from the geometric growth of the computational e�ort of the linear
equation solver with the size of the fully coupled system. The matrix conditioning of the
fully coupled system is another element that contributes to the slowing down of the coupled
solutions: the number of ILUT �ll-ins and the maximum size of Krylov subspace have to be
increased to ensure convergence of Newton’s method. Thus, the key element for successfully
guaranteeing fully coupled solutions lies in the use of an e�cient linear equation solver and
preconditioner.

4.2. Flow past a circular cylinder immersed in a freestream

Simulation of lid-driven cavity �ows has con�rmed the accuracy and e�ciency of the pro-
posed coupled method for internal �ow problems involving Dirichlet boundary conditions.
Here, the coupled method is validated for laminar steady external unbounded �ows past a
circular cylinder. The Reynolds number is de�ned as Red=U∞d=�, with d the cylinder diam-
eter and U∞ the freestream velocity. Simulations have been undertaken for Reynolds numbers
below the threshold value of Red=46±1, above which the wake behind the cylinder becomes
unsteady and Karman vortex shedding appears [22]. Thus, for the simulated Reynolds num-
bers Red=20 and 40, the �ow around a cylinder is steady and symmetric with respect to
a transversal axis parallel to the freestream direction (U∞=U∞i). Consequently, by tak-
ing advantage of the problem’s symmetry, the calculation domain can be reduced by half.
All simulations have been performed on the half O-grid shown in Figure 8. Two quantities
have been used to evaluate the accuracy of the solutions: the drag coe�cient, de�ned by
CD =D=(1=2)�U 2

∞d, and the length of the recirculating zone, LW. A grid study has revealed
that a 130d radius domain is necessary to minimize external boundary e�ects on the �ow and
to ensure that the drag coe�cient reaches Fornberg’s benchmark values [23] within a 0.2%
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Figure 8. Half O-grid used for the simulations of the �ow past a circular
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Figure 9. Streamline plot of the �ow past a circular cylinder at Re=40, FLO scheme.

Table IV. Comparison of mean drag coe�cient CD and length of wake bubble LW (measured from the
rear end of cylinder)—Re=20 and 40.

Reynolds number→ 20 40

Method Grid CD LW=d CD LW=d

MAW 88× 138 2.08 0.83 1.59 1.80
FLO 88× 138 2.00 0.90 1.50 2.20

Tritton [22] Exp. 2.22 N=A 1.48 N=A
Fornberg [23]† 129× 132 2.00 0.91 1.50 2.24

65× 52
†Two superposed grids were used for the computations.

error margin. Based on the same precision criteria, it has also been demonstrated that 88 grid
points along the cylinder surface and 148 grid points in the radial direction are required to
guarantee grid-independent solutions. The streamline plot in Figure 9 shows the simulated
main recirculating region behind a circular cylinder at Re=40. Table IV compares computed
mean drag coe�cient CD and length of wake bubble LW at Re=20 and 40 with published
results [23, 22]. As expected, FLO scheme simulations are in very good agreement with Forn-
berg’s benchmark calculations [23] for both drag coe�cient CD and length of recirculating
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zone LW. The drag coe�cients obtained also compare well to Tritton’s experimental results
[22], especially for the higher Reynolds number. MAW-scheme computations systematically
display lower accuracy, which con�rms previous results. All FLO-scheme calculations have
been undertaken using fully coupled algorithms as segregated procedure invariably failed to
converge regardless of the relaxation factors and solver parameters. Convergence di�culties
have been previously reported by Saabas and Baliga [17] when using the FLO scheme in
segregated solution contexts. These shortcomings might be attributable to the high element-
based Peclet numbers of the large grid elements located on the periphery of the domain (see
Figure 8). Convergence di�culties of the linear equation solver were also observed when using
Newton’s linearization, but were easily alleviated by increasing the number of ILUT �ll-ins
for the preconditioner. These observations are a clear indication of the superior robustness of
fully coupled methods over segregated methods.
Figure 10 shows the evolution of normalized computational e�ort needed to reach a value

of 10−8 for the non-dimensional sum of absolute values for the residues for each set of
discretization equations as a function of the number of grid points. The residuals were non-
dimensionalized using the reference length d and velocity U∞. The computational e�ort has
been normalized with respect to the computational e�ort required by the segregated formulation
with the Gauss–Seidel solver when solving the lid-driven cavity at Re=400 on a 128× 128
grid. Results were obtained using the MAW scheme for solving the �ow past a circular cylin-
der at Re=40. As for lid-driven cavity �ow, regardless of the number of grid points, all
the proposed fully coupled formulations are more e�cient than the segregated approach. The
evolution of normalized computational e�ort for the segregated method displays a quadratic
(N 2) behaviour while the fully coupled formulations follow a linear form (N). Quadratic and
linear regressions are �tted to the results, as shown on Figure 10. Figure 11 shows that for
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Figure 12. Convergence histories, �ow past a circular cylinder—Re=40,
98× 167 grid, MAW scheme.

the circular cylinder at Re=40 with 98 grid points along the cylinder surface and 167 grid
points in the radial direction (i.e. 16 366 points), the proposed fully coupled formulation us-
ing Newton’s linearization and preconditioner freezing strategy is the more e�cient one and
proves to be 7.6 times faster than the segregated approach with the Gauss–Seidel solver. It
is interesting to note that Newton’s linearization needs more than twice the computational
e�ort of Picard’s linearization when no preconditioner freezing strategy is applied. For the
�ow around a cylinder, Newton’s method su�ers from convergence di�culties of the linear
equation solver which are cured by increasing the number of ILUT �ll-ins and the maximum
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size of Krylov subspace. However, this remedy has the drawback of increasing the computa-
tion e�ort of the linear equation solver up to non-competitive levels. Newton’s linearization
requires an economical combination of preconditioner and linear equation solver in order to be
advantageous. The use of a preconditioner freezing strategy greatly reduces the computational
e�ort of Newton’s method.
Some inferences on these results can be drawn from investigating the convergence histories

presented in Figure 12 for the circular cylinder at Re=40 with 98 grid points along the
cylinder surface and 167 grid points in the radial direction. Compared to the lid-driven cavity
case at Re=400 on a 128× 128 grid, the number of iterations required to converge is divided
by three for the segregated method; it increases by a third (to 16) and cut by a �fth (to 21)
for the fully coupled methods using Newton’s and Picard’s linearizations, respectively. This
might suggest that for the segregated method, the iterative work done for coupling purposes
is proportionally lower for the �ow around a circular cylinder. It would explain the lower
e�ciency gain of the fully coupled formulation over the segregated method for this test case.

5. CONCLUSIONS

A fully coupled control-volume �nite element method for solving the incompressible Navier–
Stokes equations has been implemented and validated using internal and external �ow prob-
lems. A systematic comparison between two segregated and four fully coupled fomulations
has been presented which has allowed the evaluation of the individual bene�ts and strengths
of the coupling and linearization procedure. The proposed method is based on a primitive-
variable co-located equal order formulation using either the MAW or the FLO scheme and
following an element-by-element assembling procedure. The coupled set of discretized equa-
tions obtained is solved using an ILUT preconditioned GMRES(m) algorithm. The special
features of the proposed method lie in the prescription of a Poisson pressure equation and
a Newton-type linearization. Through lid-driven cavity problems and �ows past a circular
cylinder, the following comparative remarks can be inferred:

1. The proposed coupled methods are more robust than segregated methods. In some
circumstances, the coupled methods yield a converged solution of the system of dis-
cretized equations constructed using the FLO scheme, while the segregated formulations
diverge.

2. Regardless of the problem, all the proposed fully coupled formulations are more e�cient
than the segregated approach. This gain in e�ciency grows quadratically with the number
of grid points, thus yielding signi�cant time savings for large grids.

3. Newton’s linearization requires fewer iterations than Picard’s to reach convergence.
4. Newton’s linearization is less robust than Picard’s and requires more work per iteration
from the linear equation solver. This is attributed to the ill-conditioning of the Newton’s
linearization matrix.

All preceding conclusions only hold when solving laminar Navier–Stokes equations problems.
The behaviour of a similar fully coupled method involving additional equations related to
variables such as turbulence properties or temperature cannot be extrapolated from the present
work due to the particular nature of the coupling in these equations which only takes place
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through non-linear terms. For laminar Navier–Stokes equations problems, coupled methods
prove to be superior in both robustness and e�ciency, when compared to segregated methods.
The key element in guaranteeing successful fully coupled solutions lies in the use of an
e�cient linear equation solver and preconditioner, particularly in the context of Newton’s
linearization. Newton’s method is e�cient at reducing the number of iterations required for
convergence, but it is sensitive to the linear equation solver’s control parameters. In order
to establish a de�nitive statement about the performance of Newton’s method, a complete
evaluation of available preconditioner and linear equation solvers must be undertaken. A
possible compromise could be to alternate between Newton’s and Picard’s linearizations within
the same algorithm, based upon the convergence rate per iteration.

NOMENCLATURE

a discretized equation coe�cient
A block matrix
A control-volume surface (m2)
b right hand side term of the discretized equation
CD drag coe�cient
d circular cylinder diameter (m)
dui Pressure-gradient coe�cient for ui
D drag force per unit length (N=m)
f non-linear equation
F non-linear equation system
j Jacobian matrix element
J Jacobian matrix
J combined convection–di�usion �ux
JC convection �ux
JD di�usion �ux
m maximum number of Krylov subspace before restart
M number of triangular elements having node c as vertex
Ṁ interpolated point value of �um

ni outward unit normal component in the i-direction
p pressure (Pa)
Re Reynolds number
S volumetric source term
ui velocity in the i-direction (m=s)
u x-component of the velocity (m=s)
umi mass-�ow related velocity in the i-direction (m=s)
U∞ freestream velocity (m=s)
ûi pseudo-velocity in the i-direction (m=s)
û x-component of the pseudo-velocity (m=s)
v y-component of the velocity (m=s)
v̂ y-component of the pseudo-velocity (m=s)
V control volume (m3)
xi co-ordinate in the i-direction (m)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:621–644



DEVELOPMENT OF A FULLY COUPLED CVFEM 643

Greek symbols

�� di�usion coe�cient of �
� dynamic viscosity (N s=m2)
� dependent variable
� �uid density (kg=m3)

Superscript

m pertains to the mass-�ow related velocity
n pertains to the n iteration
p pertains to the equation for p
p; û pertains to the û contribution to the p equation
p; v̂ pertains to the v̂ contribution to the p equation
ui pertains to the equation for ui
u; p pertains to the pressure-gradient contribution to the u equation
ui; p pertains to the pressure-gradient contribution to the ui equation
v; p pertains to the pressure-gradient contribution to the v equation

Subscript

c pertains to node c
ele pertains to the element
i index used in tensor notation
j index used in tensor notation
nb pertains to a neighbouring node
� pertains to the dependent variable �
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